Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines
نویسندگان
چکیده
We derive multiplicative updates for solving the nonnegative quadratic programming problem in support vector machines (SVMs). The updates have a simple closed form, and we prove that they converge monotonically to the solution of the maximum margin hyperplane. The updates optimize the traditionally proposed objective function for SVMs. They do not involve any heuristics such as choosing a learning rate or deciding which variables to update at each iteration. They can be used to adjust all the quadratic programming variables in parallel with a guarantee of improvement at each iteration. We analyze the asymptotic convergence of the updates and show that the coefficients of non-support vectors decay geometrically to zero at a rate that depends on their margins. In practice, the updates converge very rapidly to good classifiers.
منابع مشابه
Efficient Multiplicative Updates for Support Vector Machines
The dual formulation of the support vector machine (SVM) objective function is an instance of a nonnegative quadratic programming problem. We reformulate the SVM objective function as a matrix factorization problem which establishes a connection with the regularized nonnegative matrix factorization (NMF) problem. This allows us to derive a novel multiplicative algorithm for solving hard and sof...
متن کاملMultiplicative Updates for Large Margin Classifiers
Various problems in nonnegative quadratic programming arise in the training of large margin classifiers. We derive multiplicative updates for these problems that converge monotonically to the desired solutions for hard and soft margin classifiers. The updates differ strikingly in form from other multiplicative updates used in machine learning. In this paper, we provide complete proofs of conver...
متن کاملEnsembles of Partially Trained SVMs with Multiplicative Updates
The training of support vector machines (SVM) involves a quadratic programming problem, which is often optimized by a complicated numerical solver. In this paper, we propose a much simpler approach based on multiplicative updates. This idea was first explored in [Cristianini et al., 1999], but its convergence is sensitive to a learning rate that has to be fixed manually. Moreover, the update ru...
متن کاملMultiplicative Updates for Nonnegative Quadratic Programming
Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and co...
متن کاملMultiplicative Updates for L1-Regularized Linear and Logistic Regression
Multiplicative update rules have proven useful in many areas of machine learning. Simple to implement, guaranteed to converge, they account in part for the widespread popularity of algorithms such as nonnegative matrix factorization and Expectation-Maximization. In this paper, we show how to derive multiplicative updates for problems in L1-regularized linear and logistic regression. For L1–regu...
متن کامل